Adding some more judges, here and there.
[and.git] / lib / Mi manual de algoritmos / version_maraton_interuniversitaria_2008-2 / src / geometria / monotonechain.cpp
blob9e5fbbdb229a063071ae4555a92a7250f0b972cd
1 // Implementation of Monotone Chain Convex Hull algorithm.
2 #include <algorithm>
3 #include <vector>
4 using namespace std;
6 typedef long long CoordType;
8 struct Point {
9 CoordType x, y;
11 bool operator <(const Point &p) const {
12 return x < p.x || (x == p.x && y < p.y);
16 // 2D cross product.
17 // Return a positive value, if OAB makes a counter-clockwise turn,
18 // negative for clockwise turn, and zero if the points are collinear.
19 CoordType cross(const Point &O, const Point &A, const Point &B)
21 return (A.x - O.x) * (B.y - O.y) - (A.y - O.y) * (B.x - O.x);
24 // Returns a list of points on the convex hull in counter-clockwise order.
25 // Note: the last point in the returned list is the same as the first one.
26 vector<Point> convexHull(vector<Point> P)
28 int n = P.size(), k = 0;
29 vector<Point> H(2*n);
31 // Sort points lexicographically
32 sort(P.begin(), P.end());
34 // Build lower hull
35 for (int i = 0; i < n; i++) {
36 while (k >= 2 && cross(H[k-2], H[k-1], P[i]) <= 0) k--;
37 H[k++] = P[i];
40 // Build upper hull
41 for (int i = n-2, t = k+1; i >= 0; i--) {
42 while (k >= t && cross(H[k-2], H[k-1], P[i]) <= 0) k--;
43 H[k++] = P[i];
46 H.resize(k);
47 return H;